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A techmque ~s developed for solving boundary-value problems of non-axisymmetric longitudinal-transverse bending in thin 
cylindrical orthotropic linearly thermo-elastic annular and solid circular plates on a linearly elastic base in a classical setting, 
The given and unknown functions are represented by Fourier expansions. The solving system of fourth-order ordinary differential 
equations is of Bessel type. The solution of the homogeneous system is obtained by a technique developed previously~: (which 
generalises the Neumann-Weber-Schl~ifli technique [1-5]) for determining fundamental solutions in the form of generalized 
power sertes- higher-order cylindrical functions of first, second and higher kinds, based on the property of the continuous 
dependence of the solutions on the parameters. Particular solutions are determined by Lagrange's method (the variation of 
arbitrary constants). The results of numerical calculations are presented for plates with a hinge-supported outer contour in which 
the inner contour ts loaded with distributed bending moments. © 2002 Elsevier Science Ltd. All rtghts reserved. 

Within the framework of the model of ~lindrically orthotropic circular plates on a linearly elastic base 
(see monographs and surveys [6-10]), exact solutions have been obtained for axisymmetric bending 
[6, 7] and for special cases [8-10]. No solutions of general form are available for problems of longitudinal- 
transverse non-axisymmetric bending. Such a solution will be presented below. 

1. B A S I C  A S S U M P T I O N S  A N D  E Q U A T I O N S  O F  T H E  P R O B L E M  

Consider a circular (annular or solid) thin plate of constant thickness h, outer radius r = a and inner 
radius r = b, in a polar system of coordinates. The plate is attached to a linearly elastic base (in Winkler's 
sense), whose coefficients of resistance in the radial, circumferential and transverse directions, Ku, 
Ko and Kw, respectively, are constant. The plate is subject to distributed loads: radial q~(r, 0), tangential 
q2(r, 0) and normal q:(r, 0), reduced to the middle surface of the plate, and is heated from an initial 
temperature T0(r, 0, z) in the natural state to a temperature T(r, 0, z). The linearly thermo-elastic 
(Hooke-Duhamel-Neumann)  deformations of the plate are small (in Cauchy's sense), and the geo- 
metrical Kirchhoff relations are satisfied, as are the conditions for the generalized plane stressed state. 
The principal axes of cylindrical orthotropism coincide with a cylindrical system of coordinates attached 
to the middle (base) surface. Surfaces equidistant from the middle surface are bent similarly, so that 
their Lam6 parameters and radii of curvature coincide. Inner layers of the plate do not affect one another. 
The effect of longitudinal stresses on the bending of the plate is negligibly small. The outer loads 
distributed over the plane and over the contours (specific radial stresses Nlb(O), Nla(O), transverse 
stresses Rib(O), Rla(0), and bending moments Mtb(O), Ml~(O), reduced to the middle plane), the 
temperature distribution or displacements (radial ub(O), ua(O), circumferential Vb(O), Va(0), and 
deflection Wb(O), w~(0)) and their derivatives and linear combinations are represented by Fourier series 
in the circular coordinate 0. 

It is required to determine the values of the radial and tangential displacements, u(r, 0) and v(r, 0), 
of the middle (base) plane; its deflection w(r, 0), specific radial and circumferential stresses Nl(r, O) 
and Nz(r, 0), and shear S(r, 0); the specific radial and circumferential bending moment, Mx(r, 0) and 
M,(r, 0), and the torque H(r, 0), the specific transverse radial stress Ql(r, 0) and circumferential stress 
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Q2(r, O), which are statically equivalent, respectively, to the inner stresses and moments of the inner 
stresses about local coordinate axes, where the latter are the tangents to the coordinate grid of a global 
(cylindrical) system of coordinates (r, 0, z) with origin at the centre of the circumference of the inner 
contour of the plate and z axis directed along the normal to the middle plane. 

The equations of small longitudinal-transverse bending of cylindrically orthotropic thin elastic plates, 
the unknown functions being the radial and circumferential (tangential) displacements ~(p, 0) = u/a 
and ~(p, 0) = v/a, in units of the radius a, and the deflection if(p, 0) = w/h of the middle surface, in 
units of the thickness h, have the following form [11, 12] (henceforth the bars over ~ ~, ~ and over the 
dimensionless relative coordinate 2 = z/h will be omitted) 

equilibrium in the radial and circumferential directions (a coupled system of two equations) 

co2,+d t a r a .  c+d u] a2u 1 av v i c a2v f2(p,0)_k2v (1.2) 

equilibrium relative to bending (one decoupled equation) 

where 

a4w 2 a3w c a2w c a w  c a4w 2(c023 +2d) a4w 
"~ p2 - -  + + ~ -  a--'~ "+ p2 ap 4 p a p  3 ap 2 ~"~'p ap2ae2 

+2d) a3w 2(c+(Jt)21 +2d) a2w 
2(0")213p apao 2 -~ p4 ao2 = fz (p,o) - k4w 

= & = o 2 .  e,h e,h 
s, o,  s , =  , D;=  , ' 1 - ¢321~z2 12(i - (ol2co21) 

i= i ,2  

2d = 2G t2 ( I -  0")21C012) = B3 = D3 
E t B~ D I 

e = cJO21+ 2d, B 3 = G12h, D 3 = 2G12h 3 
12 

k2 = K. a2 1(.2 = K. a2 kw4 = Kw a4 
B~h ' B3h ' Dih 

f~(p,O)= ql(p'O)a2 +qIT(p,O), f2(p,e)= q2(P'e)a2 +q2r(p,O) 
8j B 3 

fz(p,O) = q~(P ,e)a4 _ qzr(p,O) 
D~h 

qlT(P,O) =(Oil . ant . (l-cozl)+(co21 -c)(x2) n---L + co2~c( 2 ) a-----~- + (.ot~ p 

a 2 

+ (1)21Ot.2)a'-~ + (((X I + (.0210t2)--£((.012(X I at" 

(1.3) 
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I a2rnr } 
+c(c012~, "r'ot2)p2 302 

n r = ~ t(p,O,z)dz, m r = i 2  ~ t(p,O,z)zdz 

t(p, 0, z) = T(p, 0, z) - T0(p, 0, z) 

p = r/a is the dimensionless radial coordinate, 13 ~ 1; z is the relative thickness coordinate, 
-1/2 ~ z ~ 1/2; c is the coefficient of orthotropism; E1 and E2 are the Young's moduli in the radial and 
circumferential directions; B, are the tensile and compressive stiffnesses; Di are the bending stiffnesses; 
2d is the coefficient of shear orthotropism; e is the reduced coefficient of shear orthotropism; c021 and 
~012 are the coefficients of transverse strain in the direction 2 (or 1) for expansion (compression) in the 

2 2 2 direction 1 (or 2) (Poisson's ratios); B3 is the shear stiffness; D 3 is the torsion stiffness; ku, kv and kw 
are the radial, circumferential and lateral reduced "bed" coefficients, respectively; fl(P, 0),f2(p, 0) and 
f~(p, 0) are the radial, tangential and normal generalized "force" loads, respectively; ql(P, 0), q2(P, O) 
and qz(P, 0) are the given radial, circumferential and normal distributed force loads, respectively; qlr(P, 
0), q2r(P, 0) and qzr(P, 0) are the given radial, circumferential and normal distributed "thermal loads," 
respectively; cq and c~2 are the coefficients of linear thermal expansion in the radial and circumferential 
directions; nv is the average temperature and m r  is the average temperature gradient over the plate 
thickness; t(p, O, z) is the difference between the actual temperature and the natural temperature To(P, 
0, z) of the unstressed and unstrained state. 

The following relations hold for the elastic moduli of an orthotropic body, Poisson's ratios and the 
coefficients of linear thermal expansion 

EIO)21 = E2(.1)12 , EI(~ ~ = E2c{ 2 

The last relation follows from an analysis of the thermodynamic potentials (the internal energy 
U(E, q), the free energy F(e, T), Gibbs potential X(c;, T) and the enthalpy Y(c~, q)) [13]. 

2. THE S O L V I N G  S Y S T E M  OF E Q U A T I O N S  

Let us represent the known loads and temperatures 

{ut, ul3, 01,013, nil, nile, mll, m113, sl13, Sll, rl I, rll3} 

distributed over the plane, the inner contour p = 13 = b/a and the outer contour p = 1, and also the 
unknown functions 

{u, u, w, n~, n 2, st, m I , m2, h I , r~, r2} 

where the force characteristics are divided by the stiffnesses 

N(I.2) Mo.2) a2 e(I,2) a3 Ha 3 S 
9 n("2)-  Bj rn(l'2) D,h ' Pil.2) DI h hi -'~3 h , sl B3 

by the Fourier expansions 

! 
(u, v, w)(p, O) : ~-(u, v, W)o(p) + ).7, [(u, v, wLp (p)cos pe + (u, v, w),p (p)sin ;,O] 

p=l 

(2.1) 

where the functions (u, v, w)cp(r ) and (u, v, w)~p(r) - the coefficients of the cosines (symbol c) and sines 
(symbol s) - depend on the harmonic numberpo The initial system of partial differential equations is 
then reduced to a system of ordinary differential equations of the eighth (fourth and fourth) order for 
one group of components, e.g. for the cosines: 
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(2) s (I) 
BII {Ucp} + %12E12 {tlsp} = flcp(p)p z 

c ( i)  (2) 
%21E21 {Ucp} + B~2 {Usp} = f2sp(p)p 2 

B~'I) I w }=fzcp(p)p 4 3 cp 

(2.2) 

and an analogous system for the other (sines), differing only in the signs of the coefficients ~-~2 = ~-~2 
and %~1= %51. 

Here we have used the following notation for differential operators of order Lij of Euler and Bessel 
types 

LV . Lij Z O E~L"'(y}=I-I (O-%t)(y}, B~t'V){y}=E~l'O){y}+ey p y 
I=I 

expressed in polynomial form as the commutative product of elementary binomial Euler operators 
E~.D{y} = (D - v0.){y}, where 

D{y}=p~p, D("){y}-p p ... p 

n t imes 

is a differential operator in the system of polar coordinates 

VII0.2) = +(c + dp2 ) ~ ,  
c+d  

VI21 --_.--V211 m ~  
(o2~ + d 

v222 v33 2 ,+ 33 v333, :,+ 332 

I 
I+A3 + l_A3 2 

are the characteristic parameters v d of the binomial operators 

A 3 =c+2ep 2, B 3 =[cp 2-2(c+e)]p  2, ~,~~ =+p(o}21 +d), %~,~ = ; p  (o2t + d 

d 

are the coefficients of the system, and Z 4 is the exponent of the power of the Bessel correction. 

3. SOLUTION OF THE SYSTEM 

The solution of system (2.2), consisting of the general solution {~, ~, ~} of the homogeneous system, 
expressed in terms of fundamental solutions {ill(P), ul(P), wl(P)} and arbitrary constants At, and a 
particular solution u(p), u(p), w(p) of the inhomogeneous system 

4 4 

ucp(p) = ~ AcptEcpt(P)+ Ucp(P), Usp(P) = ~, Acptffccpt (P)+ Vsp(P) 
I=1 I=1 

4 
w.,(p) = ~ B~pl~pl(p)+ Wcp(O), 

l--I 

as a system of Bessel type, will be expressed as generalized power series [9] 

(3.1) 
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'-'yl I" Yt(P)={(u,v,w)cpt(p),(u,v,w)st, t(p)} (3.2) Yt(P) =p  ~c;,.t +m=l 

The characteristic exponents vt are determined from the appropriate characteristic equations. 
The system of fundamental solutions of the two coupled second-order equations and one decoupled 

fourth-order equation of Bessel type, in accordance with formula (3.2), contains numbers vt which are 
the roots of the characteristic (secular) equations. The secular equations for the systems specified above 
are formed as follows. 

For the fourth-order differential equation (2.2), which is the sum of a fourth-order Euler 
operator E~4){w} and the Bessel correction k4p4w, the secular equation is determined by the characteristic 
parameters of the Euler operator, and in this case we have a biquadratie equation 

p3~4)(v) = (v - 1) 4 - (! + A 3 )(v - 1) 2 + (As + B~) = 0, (3.3) 

whose roots v, are identical with the exponents v33t(/= 1, 2, 3, 4). 
We will assume that the numbering of the roots or parameters v33t is such that their values for 

c/> 1 are arranged in decreasing order with increasing value of the subscript I. Note that forp = 1 and 
arbitrary c (when ~'331 = 1 + (c + 2e) t/2 and ~'332 = 0 )  the two roots v332 = V333 = 1 are identical, 
and forp  = 0 and c = 1 (when ~.332 = ~.333 = 1 )  there are two identical pairs of roots: v332 = V333 = 2 
and v333 ----- V334 = 0. The first case is that of bending according to the first harmonic, and the second is 
that of axisymmetric bending modes of an isotropic circular plate. 

The characteristic equation for system (2.2) of two differential equations of Bessel type is obtained 
from the determinant of the corresponding Euler-type equation (when only complete Euler operators 
remain on the left-hand side) by the substitution D ~ v. We have 

(v) pg)(v) II 
Lq ~(L,,I )/,,x Lq 

E~L'j){y}= ]- I (D-vv t ) { y }= r  q t v ; = r i  (v-vi i  t) 
I=1 I=1 

As a result we again obtain a biquadratic characteristic equation 

P ~ 4 ) ( V ) =  V 4 - A 4 V  2 + 8  4 = 0  

where the characteristic roots (exponents) v44l are 

(3.4) 

V**O.4) =4-~'44t, V**(2.3) =+~*.2, 9~**(I.2) ={A412+[(A4/2)2-B4]~} ~ 

A 4 =(c+dp2)(l+l/d)+pZ(o321+d)21d, B4=(c+dp2)2/d-p2(c+d)2/d 

When p >~ 2 the characteristic roots are simple (non-multiple, and the difference of any two is not a 
multiple of two). Forp  = 1 and arbitrary c (when/~441 = 6" -t- d)(1 + 1/d) + (0~21 + d)2/d, )~442 = 0) we 
have two identical characteristic numbers v442 = v 443 = 0, while for p = 0 (when)-*,1 = ~ c and 
~'442 = \ ¢]d) the system splits into two decoupled equations with independent characteristic numbers. 

The fundamental solutions depend on the multiplicity of the roots, in particular, solutions 
corresponding to non-multiple roots are simple, in the form of generalized power series, while those 
corresponding to multiple roots are generalized power series in which the powers of the logarithms are 
different from the multiplicity exponent of the roots. 

4. C L A S S I F I C A T I O N  OF THE S O L U T I O N S .  M U L T I P L I E R S  
OF C H A R A C T E R I S T I C  ROOTS 

We will classify the roots of Nth order equations by the technique described in the paper cited in 
the footnote on page 963. We introduce an anti-symmetric matrix of multipliers, whose components 
are the differences of pairs of characteristic numbers (roots, exponents), arranged in decreasing order 
and divided by the power exponent Zij of the Bessel correction. The components of the multipliers that 
satisfy the relations. 
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g,#,t = rot' - vijt txqkt = --gqmk + ~tq,,,t, k ,  l, m = I, 2, 3, 4 
z , ,  ' 

(4.1) 

vok 1> v0t ~ vo.,. for ,n I> r ~> l 

in one row form an increasing sequence. For example, for the roots of the first secular equation (when 
Z33 - 4 is identical with the order of the equation) and of the second (when Z44 = 2 is not the same 
as the order of the system), the elements of the multiplier matrix are as follows: 

~133kl = V33k - -  V33/ , [.1,44kl = V44k - v 4 4 t ,  k , l  = !,2,3,4 
4 2 

The over-diagonal components of the matrix [ 1/33k/[ a r e  always positive, the diagonal ones are zero, 
and the subdiagonal ones are negative. 

The denominators of coefficients of series (3.2) contain the products 

4 ra 

1111 (o-okt + ¢) 
k=l¢=i 

whose factors are sums of multipliers ~gkl and the natural numbers ~ = m a N which vanish when the 
multipliers take negative integer values. We distinguish among the rows of multipliers: simple rows 
contain only fractional subdiagonal components, and singular rows contain negative integer-valued or 
zero subdiagonal components. The kind (or multiplicity) of a row is determined by the number of its 
singular elements. Two rows - the kth, simple, row and the/th,  singular, row - are said to be conjugate 
with respect to the multiplier 

gt,jkt = -gtok t = mvk t = O, 1, 2 . . . .  

The first (simple) row is said to be basic generating, and the second, conjugate-generating. Two rows, 
the first basic generating row and the first singular row of the first kind which has only one singular 
element, form a root pair. All multiple solutions of second, third, etc. kinds can be expressed in terms 
of root pairs. There may be several root pairs, with an appropriate number of kinds for each. To a simple 
row there corresponds a solution of the first kind and to a singular row solutions of the second, third, 
etc., kins. For the systems being considered here, there are most frequently solutions of the first and 
second kinds, more rarely also of the third kind. 

5. S O L U T I O N S  OF THE F I R S T  KIND 

Using a standard procedure [1-4, 14, 15] to determine the expansion coefficients of the generalized 
power series (3.2) for the case of simple multipliers, we express solutions of the first kind as fellows: 

for the deflection ~(c~). (n = 1, 2, 3, 4) 

~(I) = pV33,, (4) 
~.. ~33. (P) 

(Lu) + m=l Z0. (p)= z,, 11 (,,~.)? E ~ (~,,~,+~.) (5.1) 

-0) and ~(i) (n = 1, 2, 3.4) for the displacements Ucp n spn 

, 

The coefficients C (m) and c~.mn ) (m i> 1) are given by the recurrence relations U, t/ 

(m) _ (mb (m-I) I1 ,. II-II , .llll ',. II-- fi I1<:11 
k = l  
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o r  

C(m)  _ _( rn)  ,,..",(m-I) _L,..,,(m) t.-,(m-I) (?(m) ~,(rn) ( - , (m- l )  ..L r~(,"n) t.-,(m-I) 
u,n --L~ll,nt'u,n ~'~12,n"'u.n ' ~u,n :~a~21,n"u,n T'~22.n"u,n 

c<O)=c(O) c(O) = C( m 
,n ~u,n' ~'u,n ~s12,12D(I)¢.~.W44n). u,n 

with coefficients matrix II  !,,m211 defined by 

(Z (m) _ b 2 D  (2) 
II ,n  --~'v rol l  ' 

o~(m) 3,s b 2 ~ ( I )  
21,n = 'v21~u +21 ' 

O C ( m )  "Is b2 ,~(I) 
12,n : '~12nv +12 , 

(X(m) t .2~(I)  
22,. = --5,  '22 

P,) ( v . .  +2 . , )  

P4(44)(V44n + 2m)' 
i , j , k = l , 2  

(5.3) 

The four arbitrary integration constantsAcpn = C]°.)~ for longitudinal displacements and the four constants 
Bcp n for lateral displacements (n = 1, 2, 3, 4) are determined from the bounda.ry conditions. 

w (1~ w O) 1 For integer multipliers ~t33.k = -~t33k. = m33.k, solutions of the first kind -w .  and -wk are inearly 
dependent. 

6. L I N E A R  D E P E N D E N C E  OF T H E  C O N J U G A T E  S O L U T I O N S  

Using the "normalized" form of representation of solutions in terms of F-functions. 

+ t Wcpn(p) = w~/)n (19) F(!l/33tm + I) 
/k=l  

as well as the expression 

Lq 
F~L'J~(I.t,I. + m + l ) =  1"] F(II,#. + r e + l )  

k=l 

we use the "standard" procedure of [1--4, 7] to obtain the linear dependence of two conjugate solutions 
with respect to the parameter, for integer multipliers 1233kn = ~33nk = m33kn ~ N 

wcp k-(ll (19) = (_1),.33.k (k w / 4)4r.jj,,k wcp n'(I) (19) (6.1) 

Solutions of the second and higher kinds are determined by the generalized Neumann-Weber-  
Schl~ifli formula [1-5, 15], which is based on the fact that the solutions are continuous functions of the 
parameters [12, 14, 15]: 

- ( I )  COS ~ k / 4 )  "4ra33nk ~(I) - (2) Wcpn(P) ~133nk -- ( w Wcpk (P) 
wcgk (P) = n lira = 

1133nk -"~ m33nk sin ~ 33nk ~ 

_ °wcp. (_1),.33o+ ""cp_____L 

~'I 33nk ~ 33nk P33nk =m33nk 

(6.2) 

Formulae of type (6.2) determine solutions of the second kind for every root pair. Similar representations 
can be obtained for solutions of the second kind for integer multipliers taa+nk of the second system. 
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7. S O L U T I O N S  OF T H E  SECOND KIND 

For the problem under consideration, we determine solutions of the second kind by the formulae 
specified earlier (see the paper cited on page 963~-). 

For transverse displacements withp = 1 and c ¢ 1, we have v332 
and the pair of solutions of the first kind w~)3(P) and w~)2(9) are linearly = V333 = d e p e n d e n t l '  and so g3323with =coefficientg3332 = 0 
(-1) m3323 (k~/4)4m3323. Therefore a solution of the second kind has the form 

-(2)  _ I ow~t2 _ (_1)m3323 OW~13 (7.1) 

"~c13 -- ~ ,~3 i23  ~1"t3332 la3323 =m3332 =0 

where the solutions of the first kind are given by the formulae 

w-(I) (4) 
clt = P~-331 (P) 

For transverse displacements when c = 1 and p = 0 (in which c a s e  ~,331 = ~,332 = 1 and v331 = V332 
= 2, 11,333 = ~334 = 0) ,  while the multipliers are It,t3312 = ~t3321 = ~3334 = bt3343 ~" 0, w e  have two pairs of 
linearly dependent solutions" f f ~  and ff(~,, with nronortionalitv coefficient (-l'~m3312(k /4~4m3312 and 
rb~c~ and w~d3, with coefficient ( - l )m3334(kJ4)  "m3334. AS a result, we obtain solutions of the second kind 

",,- ( I)  
~(2) tIWcOi 

c02 = ¢~3312 

/ "-, - (I) 
~ (2) _ / OWcO~3 
""c04 -- ~ 3P.3334 

OWco  

~3321  p.3312 =m3321 =0 

~1'1" 3343 g33M =m3343 =0 

(7.2) 

where the solutions of the first kind are given by the formulae 

2 (4~ , - ( I )  - - - , (4) /n) ,  -")  19 ]~331(P), 1=1,2; ,~c0t=L33t,v, 1=3,4 WcO t = 

For longitudinal displacements with p = 0 and arbitrary c, the characteristic parameters v441 = 
-v442 = v443 = -v444 = \ c /d  depend only on c, and if \ c and x c/d are integers, we have two pairs of 
linearly dependent solutions of the first kind: a first pair fi~l and fi~2, with proportionality coefficient 
(-1)"4412 (k , , /4)~44n),  and a second pair 0~t and ~)z, with coefficient C1)"443, (k0/2)~-34. Accordingly, 
the solutions of the second kind have the form 

.-.(2) =10Uc0"l  / 'b "~-2m4412 ~7, (I) 
UcO 2 ~ ¢~t'L4412 ( -  1)m4412 ~ 2  ) uS"c02 (7.3) 

~[4421 114412 =ra4421 = 0 

b" . " " ,o l  (_1),.44~4 ~ 

•g4434 094443 I.I.4434 =m4443 =0 

where the solutions of the first kind are expressed as 

: ' p*-¢m Z : ,  , 
~ot (P) ,  ff " )  - s 0 t -  (p); l = 1,2 

(here we have used the notation introduced in (5.1)). In special cases (c = 1) and also whenp = 0, 1 
and c ~ 1, these solutions are identical with known solutions [5-7, 9] and are expressed by cylindrical 
Bessel functions. 

When ku = k,, = ku = 0, i.e., there is no resistance of the medium, the series in the structure of the 
solutions vanish and the solutions become those already known [9, 10, 13] for the longitudinal-transverse 

tSee also GRIGOLYUK, E. I., KOROL, Ye. Z., IZMAILOVA, M. Ye. and VOZNESENSKAYA, M. Ye., Bending of thin 
cylindrically orthotropic circular plates on an elastic base. Inst. Mekhaniki Mosk. Gos. Univ., Moscow, 1997. Dep. At VINITI 
07.10.97, No. 2974-B97. 
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bending of orthotropic circular plates; the case p = 0 is that of axisymmetric loading while c = 1 is for 
an isotropic material. 

8. PARTICULAR SOLUTIONS OF 
THE I N H O M O G E N E O U S  B E NDING EQUATION 

Particular solutions of the inhomogeneous bending equation will be determined by Lagrange's method, 
in the form 

4 4 

U~p(p) = ~ Acet(p)Qq,t(p), V~p(p) = Y'. A~pt(p)~mt(p ) (8.1) 
1=1 l=l 

4 
W~e(p) = Y~ B~j,l(P)W~pt(P), 

l=l 

so that we need to determine the functions A~pt(p ) and Bcpt(p). 
For inhomogeneous equations of Nth order with variable coefficients, given a known system of funda- 

mental solutions ft.(p), a particular solution may be expressed as [15, 16] 

,v VN. (p) 
W(p)=.=IZ ~ . ( P ) S ~ f ( P ) d ( P )  (8.2) 

where 

VN(p) = v N { ~ . } = d e t l l ~ l ,  k=0,1,2,3; n=1,2,3,4 

VN(P) being the Wronskian and VN.(p) the cofactor of the determinant at the intersection of the fourth 
row and the nth column, obtained by replacing the latter column by a column of free terms 

4 {0, 0, 0, p )~(p)}. By the Liouville-Ostrogradskii formul_a~ the Wronskian for the equations of longitudinal- 
transverse bending under consideration is Va(p) = p- .  

For the components of displacement, say, under axisymmetric loading Uc(p), Vs(p) in the form (8.2), 
V2(P) is the determinant of the matrices I1~0.11 or  IIv0.11, n = 1, 2, and Vz~(p) are the cofactors of the 
corresponding determinants at the intersection of the second row and the nth column, obtained by 
replacing the nth column by the column of free terms (0,fl(P)) or (0,fz(p)). The Wronskian in this case 
is V~(p) = p-t, and the solution is 

Uo(p)= ~o",'(p)j.~o(~,(p)pAo(p)dp~ ~o(~'(p)j.~o([,(p)pf, o(p)ap (8.3) 
Vii 1 - -  Vii 2 VII2 --VII I 

- - ( I )  
Vo(p) = Uol (P) J6-o(~)(p)pf2o(p)dp. , ff(~)(P) ~(,) 

V221 _V222 V222 _V221 I 01 (P)Pf20(p)dp • 

If there is no reaction of the base., k. = ko = kw = 0, these solutions are identical with the known 
ones [5-7, 9, 13]. 

9. I N T E G R A T I O N  CONSTANTS A c p  L AND Be,,, L. SOFTWARE PACKAGE 
AND C O M P U T E D  RESULTS 

The values of the coefficients A~pt and Bcpt are determined from boundary conditions of various types 
(kinematic and force), represented by the components of the Fourier expansion: 

displacements and deflection at the outer contour (p = 1) or inner contour (P = 13): 

(u,W)cp( p = 1,13)=(u,w)cpl,~, u sp( p = 1,13) =uspl.13 (9.1) 

angle of rotation of the normal O = bw(p,O)/Op = wi,(9,0): 
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I t O~c~,(p = I,[~) = w~p(p = 1,[~) = wcpLl ~ (9.2) 

stresses and moments:  

(n,m,r)~,7,( p = I, 6) = (n,m,r)lcpl, (s,h)lm( p = !,15) = (s,h)lspL ff 

elastic imbedding at the outer contour (p = 1) or contour inner (p = 13): 

(n, m, rhea(p) = A(, .. . .  )(u, aS, w)~(p), (s, hhm(p) = A(s.n)(u, O)sp(p) 

fAl(n,s.m,r.h) for p = i 
A("'s'='#'~) - -- ~ [ A~(n,s,m.r.h) for p = 

(9.3) 

(9.4) 

where apk ! and g pkl are the values of expressions (9.1)-(9.4), and bpk and d.g are the boundary values of 
the functions (u, v, w, n~, s~, r~)p. In formulating the boundary con+'ditions and computing the 
characteristics of the stressed state the normalized quantities. 

N(L2)(P,0) M,4.a)(P,0)a 2 
n(L2)(P,0) = , m(L2)(P,0) = B, Olh 

q) 2)(p,0) = Ru'2)(P'0)a3 h)(p,0)= H(p'0)a3 Sl(P,0)= S(p,0) 
' D~h ' D3h ' B 3 

were determined from the thermo-elasticity relations 

au ( u l o t , )  

I ( / )v  u 13u') ! /)2w i bw 

02w (I  Ow 1 02w'~ a 2 
m, (P. 0 ) = -  0==~- (021 ~p ~'p + ~ ~-='~-~- "~-(al + e021Ot2)mT(P,0) 

fi(p.0)= ~3w 1 02w c 0w + c 0 2 w  a3w 
OP 3 P OP 2 +~-~p-I O)2~3 (I)21 - -  002 p2 0pO02 

8mr(p'O) ~'[(al +~21a2)-c(m12al  +a2)]  

l a u l  . oqu u +~._~.j_(oOl2Otl +Ot.2)n.r(p,O) n2(P,O)= c (o,2 ~pp + p 

02w law I 32w "] a 2 

r2(P,O)= c%) 03w c + 4 d  02w 4 d  dw  c 03w " a 3 
- p 0p200 p2 0p00 pS 00 ~ 0 0  ~ +~=Tc((o)2a)+a~) 

I 0mr(P,0) 
p 00 

II apkt 11 II Acpt II = 11 bpk II, II gpkt II II Bcpt II = U d,k I1 (9.5) 

for a solid plate ([3 = 0), it is stipulated that at the centre (p = 0) the radial, circumferential and 
transverse displacements, u(0, 0), v(0, 0) and w(0, 0), respectively, should be bounded. 

The coefficients Acd and Bcd (l = 1, 2, 3, 4), must satisfy a fourth-order system of algebraic 
equations 
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In analysing the stress-strain state of plates from the thermomechanical and geometrical parameters, 
use was made of the "self-similar solutions" obtained, where the number of parameters was reduced 
to a minimum. The following values were taken in the computations 

_ COO = (O0~/C C0,2C02,=C0O2=0.0144, COI2-'~c-- c , 0~2, 

2G12 = "fc , E2=cEI, 13 =/-2 a = 1 0  
E I I + co 0 z '  h 

cxl 2 + 2co0o~.a 2 + cox22 = const, o h = 4-cot 2 

kw l a/~= {O,~,~,l,2,4,8} 

Figures 1-3 present the computational characteristics of a disk, hinge-supported at the outer contour 
and loaded with a radial uniformly distributed bending moment at the inner contour. The computations 
showed that it was sufficient to consider only 10--15 terms in expansions (3.1), in order that any further 
increase in the number of terms should affect the result by less than a few hundredths of one percent 
when the transverse and longitudinal stresses and bending moments, i.e. the derivatives of the unknown 
functions - the components of the displacements - were computed. As is evident from (5.1) and (5.2), 
when kw = ku k~ = 0 (no resistance of the base), these solutions are identical with those of the problem 
of longitudinal-transverse bending of circular anisotropic plates [9, 12] subject to non-axisymmetric 
loading and heating. The presence of factors of the type 0vt -k (k = 1, 2, 3) indicates a special feature 
of the dependence of the stresses and moments in the neighbourhood of p = 0 on the anisotropy 
parameter c: when c < 1 they increase rapidly, but when c > 1 they tend to zero [11, 13]. When c = 1 
(an isotropic plate on an elastic base) solutions (5.1) become those known from [5-10], expressed 
in terms of second-order cylindrical functions - Bassel functions. Analysis of the graphs (Figs 
1-3) for a constant anisotropy coefficient (c = 16.8) points to the significant dependence, first, of 
the profile of the bent plate (deflection • = w/h) on the coefficient of elasticity kw of the base 
(Fig. 1): as the resistance of the case is increased, the effect of the load (in this case - of the radial 
bending moment) is localized; changes occur in the distributions curves of the radial bending moment 
~z = Mz/Mo and the circumferential moment m2 = M2/Mo reduced relative to the moment M0 acting 
at the inner contour (Fig. 2), and in that of the transverse stress ~-1 = Rla/Mo reduced relative to Mo/a 
(Fig. 3). 
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